

2021

Operation & Safety Report of Mochovce and Bohunice Nuclear Power Plants

Content

Technical data	2
Start of operation	6
Abbreviations	6
Share of sources in electricity supplies	8
Electricity & heat supply	10
Operational events reported to the NRA SR	14
Assessment of operational events (INES)	14
Breach of limits and conditions of nuclear installation operation	16
Operation	17
Unit Capability Factor – UCF	18
Unplanned Capability Loss Factor – UCLF	19
Forced Loss Rate - FLR	20
Grid-Related Loss Factor – GRLF	21
	22
Industrial Safety Accident Bate - ISA	23
Contractor Industrial Safety Accident Rate – CISA	24
Collective Radiation Exposure - CRE	26
Unplanned Automatic Scrams per 7 000 Critical Hours	27
Waste production and releases to atmosphere and hydrosphere	29
Production of liquid RAW	30
Production solid RAW	31
Emissions to atmosphere – noble gases	32
Emissions to atmosphere – aerosols	33
Releases to hydrosphere	34
Releases to hydrosphere – activation and fission products	34
Releases to hydrosphere – Tritium	35
Surface water intake (m ³)	36
Wastewater discharge - Total volume (m ³)	37
Barrier and containment tightness	38
Barrier tightness	38
Containment tightness	39
Emergency planning and preparedness	40
Safety enhancement	42
Overall assessment of nuclear safety	44

Technical data

Reactor type

pressurised water reactor (PWR)

Reactor thermal power	1 471 MWt
Unit nominal power	500 MWe EMO / 500 MWe EBO
In-house consumption	~7 %
Fuel	UO ₂ (42 †)
Fuel enrichment	4.87 % U-235

Nuclear steam supply system

Number of cooling loops	6
Coolant flowrate	43 000 ± 2 000 m³/h
Total volume	226 m ³
Working pressure and temperature	12.26 MPa / 258 °C – 298 °C

Reactor pressure vessel					
Inner diameter	3 542 mm				
Wall thickness	140 + 9 mm				
Height	11 805 mm				

Steam generator	6 per unit
Туре	PGV - 213
Volume of steam generated	450 – 485 tonnes per hour
Steam pressure and temperature at outlet	4.61 MPa / 259 °C
Turbine generator	2 per unit
Туре	ŠKODA 250 MWe
Rated speed	3 000 rpm
Generator rated power	277 MVA EMO 273 MVA EBO
Terminal voltage	15.75 kV
Rated current	3 x 10 160 A EMO 3 x 10 007 A EBO

Height	125 m EMO / 120 m EBO				
Condenser					
Cooling water volume	35 000 m³/h				
Min. / Max. temperature of cooling water	13 °C / 33 °C				

Cooling towers

4 (per 2 units)

Start of operation

	1st criticality	Start of permanent operation
EBO3	07.08.1984	14.02.1985
EBO4	02.08.1985	18.12.1985
EMO1	09.06.1998	29.01.1999
EMO2	01.12.1999	11.07.2000

Probability of reactor code damage

(according to PSA - probabilistic safety assessment)

	EBO	EMO
at full power	2.60E-06	2.12E-06
at shutdown reactor	5.03E-06	1.77E-06

Abbreviations:

ALARA – As Low As Reasonably Achievable EBO – Bohunice V2 Nuclear Power Plant (Units 3&4) EMO – Mochovce Nuclear Power Plant (Units 1&2) IAEA – International Atomic Energy Agency INES – International nuclear event scale L&C – operational limits and conditions NI – nuclear installation NPP – nuclear power plant NRA SR – Nuclear Regulatory Authority of the Slovak Republic RAW – radioactive wastes WANO – World Association of Nuclear Operators

			**	ТТ	к к к
			~ ~	、 	
	ے	٦	\sim		\sim
-⊗- \	\\ -&) -	\\ -&	⊗ __ ¢	⊗-₩-
ب ۰	ۍ <u>م</u>	` o			
] [
	~				
)) O	- 0			
_	۷- ۵ - ۷	।_ _	এবি ৽	এ –বি–ি	ব–বি-
	-70-01	୵୶୵ଡ଼ୄ	രഹം.	ൟൟ	ൟൟ
~					- ^
	× _	×	×	×	×_
س		-	uzuu-u	J	www
))		

 \bigcirc ⊳₋⊳₋⊳− -⊳-⊳-⊳-<u></u>⊳-⊳-⊳-0-0/0- --9/0-°, ⊢o ∘, ᢩᢞ᠅᠅ᢩ -⊗-₩-⊗- $\otimes W \otimes W$ $\overline{}$ * * * * * * * * * * * * *

Annual terminal electricity production

	GWh
EBO	8 021.005
EMO	7 709.017
	GWh
SE – nuclear	GWh 15 730.022
SE – nuclear SE – thermal	GWh 15 730.022 1304,428
SE – nuclear SE – thermal SE – hydro	GWh 15 730.022 1304,428 2076,435
SE – nuclear SE – thermal SE – hydro SE – photovoltaic	GWh 15 730.022 1304,428 2076,435 1,652

Electricity & heat supply

Indicator		Unit	2017	2018	2019	2020	2021	Since the start of operation
		3	3 895 857	3 894 701	3 905 997	3 971 956	3 991 106	120 675 916
		4	3 918 441	3 619 811	3 984 611	4 003 391	4 029 899	119 417 024
		EBO	7 814 298	7 514 512	7 890 608	7 975 347	8 021 005	240 092 940
Electricity gross supply		1	3 467 084	3 819 341	3 820 434	3 885 941	3 700 807	80 469 533
		2	3 799 846	3 509 222	3 657 845	3 583 053	4 008 210	75 037 541
		EMO	7 266 930	7 328 563	7 478 279	7 468 994	7 709 017	155 507 074
		3	3 615 515	3 609 995	3 625 031	3 683 587	3 699 611	112 001 713
		4	3 648 542	3 367 927	3 711 180	3 730 792	3 760 179	111 058 436
Not all strigity constantion	MWh	EBO	7 264 057	6 975 307	7 310 217	7 389 862	7 449 168	223 025 010
Net electricity generation		1	3 219 219	3 549 825	3 551 508	3 612 926	3 438 549	74 380 295
		2	3 547 785	3 270 051	3 399 309	3 333 201	3 747 560	69 688 104
		EMO	6 767 004	6 819 876	6 950 817	6 946 127	7 186 109	144 068 399
		3	924 529	1 050 438	921 598	906 509	1 100 606	27 334 561
		4	902 179	625 451	680 759	705 454	637 239	25 464 476
Heateurshy	GJ	EBO	1 826 708	1 675 889	1 602 357	1 611 963	1 737 845	52 799 037
Heat supply	00	1	101 066	206 660	205 467	177 952	148 032	3 742 298
		2	168 049	34 938	31 345	58 122	123 112	2 144 202
		EMO	269 115	241 598	236 812	236 074	271 144	5 886 500
		3	8 231	8 288	8 135	8 257	8305	281 063
On another married	b	4	8 115	7 550	8 157	8 163	8227	277 172
Operation period		1	7 543	8 277	8 225	8 324	8 084	184 294
		2	8 280	7 643	7 923	8 110	8 156	172 408
		3	22.09	19.45	26.04	22.81	18.89	1 678.6
General overhaul period	dava	4	20.51	39.93	25.12	25.85	22.20	1 662.85
General overnaul period	days	1	50.1	18.5	22.3	19.2	28.2	811.7
		2	20.0	46.6	23.8	27.6	24.4	733.0
		3	33.73	33.43	33.81	33.89	33.98	32.29
		4	33.89	33.43	33.89	34.06	33.87	32.14
Groce officiency	0/_	EBO V2	33.81	33.43	33.85	33.97	33.92	32.21
Gross efficiency	/0	1	32.14	32.14	32.18	32.34	33.36	32.31
		2	32.57	32.25	32.17	32.61	33.94	32.14
		EMO	32.36	32.19	32.18	32.47	33.66	32.23

Evaluation of operational safety of nuclear installations

Pursuant to the Act 541/2004 – "Atomic Act", nuclear safety shall be understood as technical conditions and capability of a nuclear installation (NI) or transport equipment, as well as capability of their attendance staff to prevent uncontrolled release of radioactive substances or ionizing radiation to the working or natural environment, and the ability to prevent events and mitigate consequences of such events in nuclear installations or during transport of radioactive materials.

Slovenské elektrárne as the nuclear installation licensee considers nuclear safety and radiation protection as the priority permanently superior to production requirements and commercial profit.

Operational events

Nuclear installation failures described in the above Act generally include any unplanned deviations from standard conditions. Thus, they are the power plant safety and reliability indicators. There are various types of events with causes of different nature and different level of impact on safety.

Operational events reported to the NRA SR

There were 7 events of the lowest-category (failure) at EBO and 8 events at EMO recorded, which were reportable to the NRA SR. No incident or accident category events were recorded.

Assessment of operational events (INES)

IAEA guide for assessment of operational events at nuclear installation (NI) according to the INES scale provides seven degrees of severity with impact on nuclear safety and the environment.

Number of events evaluated according to the INES scale as INES 0 (below scale – deviation of no safety significance) and INES 1 (anomaly)

In 2021, there was no event classified as INES1 or higher at EBO or EMO.

Breach of limits and conditions of nuclear installation operation

The basic document for the operation of nuclear installations is the "limits and conditions of NPP safe operation" (L&C) approved by the NRA SR. The operator's duty is to monitor and evaluate compliance with the conditions set out in the document. The indicator monitors the management level, nuclear installation (nuclear power plant) operation organization, correctness and adherence to operating regulations and instructions with the aim of ensuring the L&C requirements fulfilment.

In 2021, one breach of the Limits and conditions occurred at EBO; no case was registered at EMO.

Operation

Slovenské elektrárne performs comprehensive assessment of nuclear installation safety and reliability, using specific indicators monitoring selected areas, including those defined by the World Association of Nuclear Operators (WANO), of which it is a member. Note: WANO PWR 2021 4th quarter values for pressurised-water reactors (PWR) are presented under the charts: Median – middle point; 50 % of all monitored cases Quartile – 25 % of the best in the monitored aggregate Decile – 10 % of the best in the monitored aggregate

Unit Capability Factor – UCF

The unit capability factor is the ratio between the electricity the power plant is capable to generate over monitored period, and reference energy production expressed as percentage considering external limiting factors, e.g. grid control.

 Q4 2021 WANO PWR:

 3-yr. median:
 87.735 %

 best quartile:
 92.435 %

 best decile:
 94.004 %

	2017	2018	2019	2020	2021
EBO 3	93.73	94.39	92.26	92.79	93.67
EBO 4	92.33	85.75	92.85	92.71	93.37
EMO 1	84.97	94.37	93.44	94.52	87.02
EMO 2	94.16	86.66	89.79	85.76	92.34

Q4 2021 WANO	PWR:	
3-yr. median:	1.395	%
best quartile:	0.300	%
best decile:	0.001	%

	2017	2018	2019	2020	2021
EBO 3	0.89	0.12	0.59	0.08	0.54
EBO 4	2.03	3.57	1.28	0.23	0.13
EMO 1	1.07	0.25	0.09	0.07	0.38
EMO 2	0.41	0.48	3.26	0.79	2.45

Unplanned Capability Loss Factor – UCLF

This factor monitors progress in minimization of outages and unit power reductions resulting from equipment failures and other unplanned events. The indicator is defined as the ratio between the mean value of unplanned power reductions and reference production.

Forced Loss Rate – FLR

This factor is defined as the ratio of unplanned losses in electricity generation minus losses caused by unplanned extensions of planned outages, considering only the operating period to the reference electricity generation minus generation losses corresponding to planned outages and their possible unplanned extensions.

Q4 2021 WANO PWR:3-yr. median:0.935 %best quartile:0.16 %best decile:0.000 %

	2017	2018	2019	2020	2021
EBO 3	0.05	0	0,33	0.09	0.13
EBO 4	0.12	3.42	0.01	0.00	0.140
EMO 1	1.05	0.27	0.09	0.02	0.06
EMO 2	0.15	0.38	0.18	0.11	0.73

Grid-Related Loss Factor – GRLF

The indicator is defined as a ratio of production loss due to grid instability or grid blackout with no possibility of power plant impact during the monitored period, to the reference production value in the given quarter, expressed in %.

Q4 2021 WANO PWR: 3-yr. median: 0.00

	2017	2018	2019	2020	2021
EBO 3	0	0.12	0	0	0
EBO 4	0	0	0	0	0
EMO 1	0	0	0	0	0
EMO 2	0	0	0	0	0

Chemistry Index

This indicator assesses the chemical mode efficiency in steam generators. The best achievable value of the chemistry index is 1.0. The indicator compares concentration of selected impurities against limit values. Each value is divided by the limit value and the sum of their proportions is normalized to 1.

In EBO, the chemistry index values were slightly worsened due to the impact of recurring leaks in the main condensers of the turbine generators. In EMO, the best achievable values of the WANO chemistry index were reached.

Q4 2021 WANO PWR: 3-yr. median: 1.00

	2017	2018	2019	2020	2021
EBO 3	1	1	1	1	1.01
EBO 4	1	1	1	1	1.03
EMO 1	1	1	1	1	1
EMO 2	1	1	1	1	1

Q4 2021 WANO PWR: 3-yr. median: 0.046 % best quartile: 0.037 %

Fuel Reliability

This indicator monitors enhancement and maintenance of the high fuel tightness. It is a general measure of fuel leakage. The indicator is defined as the balanced activity of the primary circuit given by the lodine-131 activity in kBq/l, and corrected by the uranium contribution and normalised by the coolant purification rate.

The indicator demonstrates that fuel in all SE Units is leak-tight.

	2017	2018	2019	2020	2021
EBO 3	0.049	0.037	0.04	0.038	0.037
EBO 4	0.194	0.164	0.378	0.561	0.506
EMO 1	0.037	0.795	0.037	0.037	0.037
EMO 2	0.037	0.037	0.037	0.037	0.037

Industrial Safety Accident Rate – ISA

This indicator is defined as the number of accidents per 200 000 man-hours worked by NPP personnel. Contractors' employees are not included in this indicator.

In 2021, there was one registered occupational injury at EBO and two registered at EMO.

Q4 2021 WANO PWR:3-yr. median:0.04best quartile:0.00

	2017	2018	2019	2020	2021
EBO	0.115	0.115	0.359	0	0.12
EMO	0.09	0	0	0.09	0.17

Contractor Industrial Safety Accident Rate – CISA

This indicator is defined as the number of accidents of all employees of contractor organizations, including all suppliers working at the NPP, resulting in lost worktime of one or more days (excluding the accident day) or fatalities per 200,000 man-hours worked.

During 2021 there was one occupational injury of contractor at both EBO and EMO.

Q4 2021 WANO PWR:3-yr. median:0.06best quartile:0.00

	2017	2018	2019	2020	2021
EBO	0	0.54	0.703	0.86	0.66
EMO	0	0	0	0.31	0.22

Collective Radiation Exposure – CRE

(average value of collective radiation exposure per unit)

This indicator monitors decreasing trend of the overall radiation exposure of NPP personnel and contractors. The indicator is a benchmark of the radiation protection efficiency and application of the ALARA principle towards exposure minimisation.

Note: CRE values for EBO and EMO refer to the whole power plant (two units). WANO values refer to a single unit.

Q4 2021 WANO PWR:3-yr. median:332.5best quartile:218.0best decile:156.9

	2017	2018	2019	2020	2021
EBO	178.5	317.7	188.09	230.576	265.94
EMO	326.1	315.1	228.55	173.55	281.7

This indicator shows number of unplanned automatic unit scrams caused by reactor protection (AO-1) activation per 7 000 critical reactor-hours.

There wasn't any automatic reactor scram at EBO and there was one automatic reactor scram at EMO in 2021.

Q4 2021 WANO PWR: 3-yr. median: 0

	2017	2018	2019	2020	2021
EBO 3	0	0	0	0	0
EBO 4	0	0	0	0	0
EMO 1	0	0	0	0	0
EMO 2	0	0	0	0	0.853

	₩ ⊗ ₩ ⊗		_
ᠵᢩᡐᠵ			
╶═╾┥ѱ┝╼══╼┥ѱ┝╼╴			
	т _о	т о	I
<u> </u>	<u>= = =</u>	- <u>=</u> -	
-00-	-	-00-0	
-0-0-0-0-0-0-0-	ব-	<u> </u>	
$\neg \neg $	$\overline{\frown}$		

 \mathbf{Y} \mathbf{Y} \mathbf{Y}

ູ

ച

~~~ \_ \_

-┣─▷-┣─▷-┣─▷-▷-

<u> = = = - = = - </u> 

<u>ۍ</u> بې • <del>``</del> -&- \\\ \-⊗- $- \parallel \otimes \parallel \otimes \parallel$  $\overline{\mathbf{u}}$ J 

**K K K K K K K K K** 



# Waste production and releases to atmosphere and hydrosphere

Small quantities of radioactive wastes (RAW) are produced during nuclear installation operation. Liquid and solid wastes are treated and stored in the radioactive waste repository at Mochovce. In addition to this, small volumes of radioactive substances are released into the environment in the form of liquid and gaseous discharges. Slovenske elektrarne tries to minimize production of RAW as well as the environmental discharges. Discharge values, types of substances and their limit values are set by state regulatory authorities.

#### Production of liquid RAW

This indicator is defined as volume of liquid RAW in cubic metres generated by the nuclear installation operation converted to the boric acid content of 120g/kg.



|     | 2017   | 2018   | 2019   | 2020   | 2021   |
|-----|--------|--------|--------|--------|--------|
| EBO | 14.08  | 18.543 | 19.064 | 15.126 | 18.398 |
| EMO | 11.078 | 13.645 | 12.159 | 11.7   | 10.84  |

#### Production solid RAW

This indicator is defined as the volume of solid RAW in tonnes generated in a nuclear installation operation.



|     | 2017   | 2018   | 2019   | 2020   | 2021   |
|-----|--------|--------|--------|--------|--------|
| EBO | 11.89  | 14.156 | 20.408 | 25.502 | 16.154 |
| EMO | 16.807 | 17.211 | 15.469 | 16.45  | 15.681 |

### **Emissions to atmosphere**

|     | Type of discharge | Activity | Unit | Share in target value for 2021 (%)* |
|-----|-------------------|----------|------|-------------------------------------|
| EBO | Noble gases       | 4.428    | TBq  | 0.22                                |
| EMO | Noble gases       | 1.688    | TBq  | 0.04                                |
| EBO | Aerosols          | 7.909    | MBq  | 0.01                                |
| EMO | Aerosols          | 13.53    | MBq  | 0.00796                             |
| EBO | lodine 131        | 0.384    | MBq  | 0.00059                             |
| EMO | lodine 131        | 0.187    | MBq  | 0.0003                              |

\*TV - target value determined by the Public Health Authority

#### **Emissions to atmosphere – noble gases**



#### **Emissions to atmosphere – aerosols**



#### **Emissions to atmosphere – lodine**



## **Releases to hydrosphere**

#### Releases to hydrosphere – activation and fission products



|     | Type of release                 | Activity | Unit | Share in target value for 2021 (%)* |
|-----|---------------------------------|----------|------|-------------------------------------|
| EBO | Activation and fission products | 24.674   | MBq  | 0.19                                |
| EMO | Activation and fission products | 17.643   | MBq  | 1.6                                 |

\*TV - target value determined by the Public Health Authority

#### Releases to hydrosphere – Tritium

The impact of NPP operation to the environment was minimal. It is verified by calculation of the annual dose for citizens in the power plant surroundings according to the approved conservative methodology.

The calculated maximum values are approximately 200 times lower than the permitted limit of 20 micro Sievert (20µSv) set by the Public Health Authority of the Slovak Republic.



|     | Type of release | Activity | Unit | Share in target value for 2021 (%)* |
|-----|-----------------|----------|------|-------------------------------------|
| EBO | Tritium         | 8.918    | TBq  | 44.6                                |
| EMO | Tritium         | 9.382    | TBq  | 78.2                                |

#### Surface water intake (m<sup>3</sup>)



|      | EBO        | EMO        |  |
|------|------------|------------|--|
| 2017 | 20 765 059 | 21 986 000 |  |
| 2018 | 21 117 382 | 22 836 000 |  |
| 2019 | 21 973 583 | 23 309 000 |  |
| 2020 | 21 954 345 | 21 975 000 |  |
| 2021 | 21 288 165 | 21 647 281 |  |

#### Wastewater discharge - Total volume (m<sup>3</sup>)



| Year                          |     | 2017      | 2018      | 2019      | 2020      | 2021      |
|-------------------------------|-----|-----------|-----------|-----------|-----------|-----------|
|                               | EBO | 3 952 691 | 3 543 241 | 3 897 666 | 2 241 638 | 3 366 926 |
| lotal volume                  | EMO | 5 942 185 | 6 554 961 | 6 493 433 | 5 543 035 | 5 785 476 |
|                               | EBO | 3 917 886 | 3 507 707 | 3 852 955 | 2 204 200 | 3 336 502 |
| industrial waste waters       | EMO | 5 904 441 | 6 518 925 | 3 673 673 | 2 954 559 | 5 575 530 |
| Treated sowage waters         | EBO | 34 805    | 35 534    | 44 711    | 37 438    | 30 424    |
| lieuleu sewage waleis         | EMO | 37 744    | 36 036    | 23 838    | 21 625    | 13 647    |
| Allowed annual limits of      | EBO |           |           | 4 200 000 |           |           |
| discharged waters for 2 units | EMO |           |           | 7 000 000 |           |           |

# Barrier and containment tightness

#### **Barrier tightness**

Steam generator blowdown water activity. This indicator is defined as the maximum value of total  $\beta$ -activity of blowdown water dry residue from steam generators.

In EBO, small leaks of steam generator (SG) tubes were registered, inspected, and consequently eliminated. Activity in the secondary circuit of EBO Unit 3 increased only slightly, and it was below the values allowed by the Limits and Conditions of safe operation of NI that is 370 Bq/I. Activity in the secondary circuit of EBO Unit 4 was above the limit value, at which increased inspection activity is performed according to the Limits and Conditions; however, under the values allowed by the Limits and Conditions of safe operation.

Activity of blowdown water in both EMO units has been on the lowest possible detectable limit -7 Bq/l for a long term.



#### **Containment tightness**

This indicator monitors containment tightness as the third physical barrier against release of fission products. The indicator is defined as resulting containment air loss value per 24 hours given as percentage of the containment volume at over-pressure of 150 kPa.

Containment tightness is defined by the limits and conditions.

For both Bohunice NPP units containment leakage shall not exceed 13 % per 24 hours.

For Mochovce NPP this value is set at 5 % per 24 hours.



## Emergency planning and preparedness

Slovenske elektrarne permanently maintain and regularly test the emergency planning and preparedness system, incl. public warning and notification system, for a case of a radiation event or accident, probability of which is, however, extremely low. The aim of emergency preparedness is to ensure preparedness of NI staff and contractors to cope with extraordinary events, with an emphasis on reducing the risk of event/accident occurrence, mitigation of their consequences, prevention of harm to health and reducing the effects on human health.

There were two site emergency drills organised (one at Bohunice NPP and one at Mochovce NPP) in cooperation with NRA SR, Ministry of Interior, Ministry of Defence, Slovak Armed



Forces, Crisis Staffs of District Authorities, Integrated Rescue System and Fire and Rescue Corps that are organised once in 3 years according to the legislative requirements. Both drills were evaluated as successful.

There was no event classified at Bohunice or Mochovce NPP in 2021 that would require activation of the Emergency Response Organisation.



## Safety enhancement

Investment projects and modifications implemented at Bohunice NPP:

Replacement of accumulator batteries for assurance of basic safety functions of the class 1 emergency power supply.

Drainage of selected intakes of industrial waste water from the turbine hall to the industrial sewage to decrease the volume of released tritium waters.

Modification of the steam generator impulse safety valve control system to meet the legislative requirements for classified equipment.

Replacement of the class 1 emergency power supply invertors and rectifiers to enhance the capability of maintaining the basic safety functions.

Monitoring of gas releases by reliable continuous radioactive emissions monitoring in the ventilation stack.

Innovation of computer stations of the technological computer system by replacement of hardware and software to assure information from individual operational and technological systems.

#### Investment projects and modifications implemented in Mochovce NPP:

Modification and power increase of turbine generators (TG) of the Unit 1 from 470 to 500 MWe – stator replacement, modification of low-pressure and high-pressure parts of both TGs, modification of TG moisture separators, replacement of unit transformers, replacement of oil and electronic turbine control systems, etc.

Modification of feedwater flow rate measurement nozzles downstream the high-pressure heater and addition of measuring instrumentation in relation to the Unit efficiency enhancement.

Provision of extended potable water source monitoring in compliance with the decision of the Nitra District Authority and the decision of the Ministry of Environment of the SR.

Seismic reinforcement of panels and desks of the main control room and emergency control room to meet the seismic resistance of 0.15g.

Reassessment of classification of buildings and unit equipment – seismic reinforcement of structures of the operational building, essential service water pumping station, diesel generator station, fire station and others.

Modification of fuel leak-tightness inspection system.

Replacement of boron acid concentration analysers.



# Overall assessment of nuclear safety

Based on the assessment of a set of operation safety indicators, the operation of nuclear installations of Slovenske elektrarne in 2021 may be considered safe and complying with legislation on the use of nuclear energy. Corrective measures have been adopted for events and indicators with negative trends. Operation of Slovenske elektrarne nuclear installations had minimal impact on the environment and negligible radiation exposure of personnel, public and environment.

\_\_\_\_\_  $-\otimes + \otimes + \otimes +$ ᠵ᠊ᢩ᠊ᠵ᠊ᢩᢞᠵ᠊ᢩᢞᡒᢩᡐ -10F-CD-10F-CD-10F-CD-10F $\circ \underbrace{}_{+}^{+} \circ \underbrace{}_{+} \circ \underbrace{}_{+}^{+} \circ \underbrace{$ ======== -0-0-0-0-0-0-0-0-0-AUAVAUA - এচন্<u>ত</u> কিন্ত<u>ি</u> ক্রিক্তি  $\times$   $\stackrel{\circ}{\times}$   $\times$   $\stackrel{\circ}{\times}$   $\times$   $\stackrel{\circ}{\times}$   $\times$   $\stackrel{\circ}{\times}$   $\times$   $\stackrel{\circ}{\times}$ ൝൴൙൴൴൙൴൴൙൴ <u><u>AUAUAUA</u></u> ▷-┣-▷-┣-▷-┣-▷--9 /0-0 / 9-9 /0-ᠵᢩ᠅ᠵᢩ᠅ᠵ᠅ᡷ᠅ -



The company is certified according to three management systems:

Certificate ISO 9001:2015 – Quality management system Certificate ISO 14001:2015 – Environmental management system Certificate ISO 45001:2018 – Occupational health and safety management

Issued by 3EC International a.s.



Issued by: Slovenské elektrárne, a.s. tel.: +421 36 6391102 e-mail: energoland@seas.sk www.seas.sk © 2022

\_\_\_\_\_\_  $- H \otimes H \otimes H \otimes$ ᠅ᢞ᠋᠅ᡷ᠅ᡷ᠅᠅ ▷-┣-▷-┣-▷-┣-▷ՠ֎֎֎֎ ൟൟൟൟൟൟൟ  $\stackrel{\times}{\times} \times \stackrel{\times}{\times} \times \stackrel{\times}{\times}$ ------᠊᠊ᡐᢙ᠊ᠪᠹᢦᡇᢙ᠊ᢒ᠀ᡔᡇᢙ ՠ֎֎֎֎ ᠆ᡇ᠖᠆ᢒᢉ᠋᠀᠆ᡇᢙ᠊ᢒᢉ᠀᠆ᡇᢙ --<u>\varticles || \varticles || </u> www  $\underbrace{\mathbf{Y} \ \mathbf{Y} \ \mathbf{Y}$ 

SLOVENSKÉ ELEKTRÁRNE